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Quaternionic quantum mechanics is investigated in the light of the great success 
of complex quantum mechanics. It is shown that to reproduce the results of 
complex quantum mechanics, quaternionic quantum mechanics must contain 
complex quantum mechanics. 

1. INTRODUCTION 

The work of  Birkhoff and von Neumann (1936) was aimed at finding 
physically plausible hypotheses which imply that quantum theories must 
be described by a complex quantum mechanics. They were unable to find 
natural hypotheses which restrict quantum theory sufficiently. They were, 
however, able to find natural hypotheses which restrict quantum theories 
to those that are described by a lattice of  propositions which is isomorphic 
to a lattice of  closed subspaces of  a Hilbert space over a division algebra. 

Now complex quantum mechanics (CQM) is such a successful theoD ' 
both in its accuracy of  prediction and its scope of application that there 
have been many attempts to single it out by further restricting and better 
motivating the structure of  possible quantum theories. However, the 
hypotheses of  Birkhoff and yon Neumann remain the most restrictive if not 
the most natural. We are therefore left to face the possibility of quantum 
theories different from and alternative to CQM. We require that any such 
alternative incorporate the success of  CQM and explain its apparently 
universal scope. The accuracy of  CQM predictions means that alternative 
theories must in essence extend CQM rather than differ from it. There 
appear to be two ways that an alternative quantum theory can extend CQM. 

First, it may be that the alternative theory is only applicable to a 
restricted set of, as yet, unobserved particles either exotic or constituent, 
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and that in some manner the effects of the alternative theory are confined 
to these particles so as to only weakly perturb the observed particles. This 
approach certainly avoids contradicting CQM, yet it does so at the cost of 
introducing some unspecified and undemonstrated mechanism. It is also 
unsatisfactory because of its ad hoc separation of CQM and the alternative 
theory. This separation does not treat the alternative theory as a true 
alternative in the spirit of Birkhoff and von Neumann, but rather as an 
addition to CQM which has been artificially prevented from contradicting 
CQM. 

Second, it may be, and in the first place it seems preferable, that the 
alternative theory is taken as a true alternative and considered as applicable 
to all particles. If this is the case, we still need a mechanism whereby the 
alternative theory does not contradict CQM. 

The fact that we are familiar with exotic behavior being restricted to 
areas that we have not yet observed does not lend any merit to the assumption 
made in the first approach instead of that made in the second. In the absence 
of a demonstration that either assumption is true, the second approach is 
to be preferred, as it fits in more with the Birkhoff and von Neumann idea 
of "alternative." 

Since the work of Birkhoff and von Neumann, the lattice of subspaces 
of a quaternionic Hilbert space has been seen as an alternative realization 
of the lattice of propositions of quantum theory to the lattice of subspaces 
of a complex Hilbert space. Gleason's theorem and the spectral theorem 
carry over from complex quantum theory (Finkelstein et al., 1959; Bel- 
trometti and Cassinelli, 1981), and therefore in quaternionic quantum 
theory, just as in the complex theory, states may be identified with density 
operators and observables with Hermitian operators. So quaternionic quan- 
tum theory may be expressed in Hilbert space language as a direct alternative 
to the complex Hilbert space formulation of quantum theory. The second 
approach above is then to be preferred for the study of quaternionic quantum 
mechanics (QQM) in particular because it gives QQM the status of a true 
alternative theory, which it appears to be. In this paper we will take the 
second approach and we show that an immediate consequence of the 
requirement that QQM not contradict CQM is that QQM contains CQM, 
thus splitting QQM into complex and quaternionic parts. A mechanism by 
which these quaternionic parts do not contradict CQM is discussed by us 
elsewhere (Nash and Joshi, to appear). 

2. CQM INSIDE QQM 

Here we will show why and, to some extent, how the states and 
propositions of CQM correspond to states and propositions of QQM. That 
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is to say that in a loose way, we find CQM inside QQM. This inclusion of 
CQM in QQM will be made stronger and more precise in Section 5. 

We are now supposing that the world is completely described by QQM, 
that is to say that the preparation procedures (states) and the yes/no 
experiments (propositions) of the world correspond, respectively, to the 
density operators and the projection operators of a quaternionic Hilbert 
space. However, CQM has successfully associated at least a subset of these 
states and propositions with density and projection operators of a complex 
Hilbert space. 

If we assume that every density operator and every projection operator 
that CQM would normally associate with a state or proposition of the world 
does indeed correspond to one in the world, then, as QQM also associates 
a density operator or a projection operator with that same state or proposi- 
tion, there exist mappings hp and hs mapping projection operators of CQM 
to projection operators of QQM and mapping density operators of CQM 
to density operators of QQM, respectively. 

If we are hoping that QQM avoids being in glaring and immediate 
conflict with the successes of CQM, then it is necessary that the above 
association exist and QQM agree with CQM when considering the states 
and propositions that CQM describes. This requires for a density operator 
D of CQM and a projection operator PM mapping onto the subspace M 
of the complex Hilbert space that 

Tr(DPM) ~- Tr(hs(D)hp(P~)) (2.1) 

However, in this paper, we will assume equality for (2.1) above. This leaves 
the consideration of possible inequality in (2.1) for further papers, where 
we hope to show that slight inequality in (2.1) for any states and propositions 
leads to gross inequalities for others. 

Position and momentum are such basic quantities that it is fair to 
demand their association with Hermitian operators in both CQM and QQM. 
Given the specific operators to which they correspond (Qc, Qo, Pc, and 
PQ), the propositions belonging to their spectral measures are identified. 
We will write these spectral measures as Poe(" ), Poq(" ), Pvc(" ), and PPo(" ), 
respectively. For the identified propositions of CQM to be consistent with 
the identified propositions of QQM, it must be for all Borel subsets E of 
R and for all states D of CQM that 

Tr(DPoc(E)) = Tr(h~(D)PoQ(E)) 
Tr(DPpc(E) ) = Tr(h,(D)Ppo(E)) (2.2) 

This then restricts hs and he to satisfy 

Tr(hs(D)hp(Poc(E)) ) = Tr(hs(D)PoQ(E) ) 

Tr(hs(D)hp(Ppc(E))) = Tr(hs(D)PpQ(E)) (2.3) 
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The four equations above restrict the nature of hs and he and, after 
examining the possible forms that position and momentum observables can 
take, form the basis of further discussion of hs and he. 

3. THE QQM OF A SINGLE PARTICLE IN ONE DIMENSION 

The analysis in this paper relies on the work that has gone before, in 
that many useful results that are valid in CQM have been shown to be valid 
in QQM. In particular, Gleason's theorem and the spectral theorem apply 
to QQM (Finkelstein et al., 1959; Beltrometti and Cassinelli, 1981; Horowitz 
and Biedenharn, 1984; Jauch, 1968; Truini et al., 1981). The results already 
shown are sufficient to ensure, among other things, the efficacy of one- 
dimensional wave mechanics for an examination of the fundamentals of 
QQM. We will use it for such an examination. 

So, following earlier work, the QQM of a particle in one dimension 
may be formulated in terms of the quaternionic Hilbert space H o = L2o(R), 
the space of Lebesque square-integrable functions from R to Q. The 
space and time translations are implemented by unitary operators U~ = 
exp(t~ a/ax) and Vt = exp(-JHt),  respectively. H is a positive Hermitian 
operator and J is a skew-Hermitian unitary operator which commutes with 
H. J and H are uniquely determined by Vt and the positivity of H. The 
position and momentum operators are then x and J' a/ax, where J '  is some, 
as yet undetermined, skew-Hermitian unitary operator which commutes 
with a/ax. Such freedom in the choice of momentum operator is not 
considered in the analogous CQM situation, where J = J '  = i is taken to be 
the case. A restriction on J and J '  will, however, develop from the relation- 
ship between CQM and QQM. 

The specific form of the spectral measure of position is as in the CQM 
situation, that is, for any Borel subset of R, E, any u c Ho, and all x ~ R, 

(Poo(E)u)(x) = xE ( x ) u ( x )  

As J '  is not restricted, we will not attempt to give the specific form of the 
spectral measure of momentum. We will, however, give the spectral measure 
of the operator q 8/ax, where q is some unit pure imaginary quaternion. 
To this end, we define, for u ~ Ho, 

fLq(p) = \2r I~_~ exp(qpx)u(x) dx 

Then for any Borel subset of R and any u ~ H o 

( 1 ~  '/2 
(Pq o/o~(E)u)(x) = \-2-~] f?o~ exp(-qpx)xe(p)aq(p) dp 
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The above expression may be associated with the spectral measure of  Pc 
in the following way. We note that there exists a unit pure imaginary 
quaternion ql such that [ql,  q]§ Then for any u ~ H Q ,  u(x)  may be 
written as U~ w h e r e  u~ is the one- 
dimensional complex Hilbert space. Then 

(Pq o/ox(E)u)(x) = (Pq o/ox(E)u~ + (Pq o/ox(E)u')(x)ql 

= o'[(Ppc (E)cr-l(u~ + tr[(Ppc (E)cr-a(ul))(x)]ql 

where tr represents both the isomorphism from C to (1, q) and the associated 
isomorphism from Hc to L~,q>(R). 

4. CONVENTIONS 

For an excellent review of the concepts of  quaternionic Hilbert spaces 
we refer to Horwitz and Biedenharn (1984), whose conventions we will use. 
In particular, we note that we will define multiplication by scalars as on 
the right. 

The following lemmas concern the relationship between one- 
dimensional wave CQM with one-dimensional wave QQM and when we 
refer to CQM and QQM it should be understood that it is to the one- 
dimensional wave mechanics. The distinction between the inner products 
of  HQ and Hc will not be explicitly made but should be taken from the 
context. The symbols ( . )  will indicate the structure generated by the set 
they enclose, the nature of  which, algebra or subspace, will be given by the 
context and the nature of  the elements of  the set. 

We will use normalized vectors unless otherwise specified. 
Projection operators mapping into one-dimensional subspaces will be 

denoted by Pv, where v is an element of  the one-dimensional subspace. 
For v ~ Hc and u ~ H o such that v( x ) ~ R C and u ( x ) ~ R Q and v( x ) = 

u(x)  for all x c R it will be convenient to denote both by the same symbol 
and write both as v. 

5. LEMMAS 

With the following lemmas we will show the requirement that QQM 
be consistent with CQM, in the sense discussed above, ensures that the 
entire structure of the Hilbert space formulation of  CQM is found intact 
and with the same physical interpretation inside the Hilbert space formula- 
tion of  QQM. 

Lemma 1. For v ~ He,  that {p: ~ ( p ) ~  0} is bounded implies v is an 
element of  the domain of  O"/Ox" for n = 1, 2 , . . . ,  i.e., that v ~ C ~176 
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For u ~ H o, that {p: t~q(p)# 0} is bounded  for some pure imaginary 
unit quaternion ql implies u is an element of  O"/Ox" for n = 1, 2 . . . . .  

Proof. Take v ~ Hc such that 

( 1 ~  '/2 
v ( x ) = \-~-~ 2 

\-~-g / 

Therefore 

E = {p: t3(p) ~ 0} is bounded.  Therefore 

I_~exp(ipx) v(p)dp 

IE exp(ipx) ~(p) dp 

o n I Ox" v(x) = \2~1  (ip) ~ exp(ipx) ~(p) dp 
E 

The mapping  v--> B preserves the norm. Therefore as v is square- 
integrable, so is t3. Now for v to be an element of  the domain of  O"/Ox" for 
all n = 1, 2 , . . . ,  (O'/Oz") ~ must be square-integrable for all those n. As v--> t3 
preserves the norm, 

- -  v(x)  dx = 3 -o  ](iP)"B(P)I2 dp 

<- [ IB(p)I 2 d p ' s u p ( p  2) 
d E E 

< oo because E is bounded  

So (O'/Ox") v is square-integrable for all n = 1, 2 , . . . .  
For the second part  of  the lemma we take u ~ H o and q a pure imaginary 

unit quaternion such that {p: ~q(p)~ 0} is bounded.  We can find another  
unit pure imaginary quaternion ql which ant icommutes with q; therefore 
for all x we may express u(x) as u~ uZ(x)ql with u~ ul(x) E ({1, q}). 
Since u is square-integrable, then as 

L oo> lu~ = d x §  J_~ lu'(x)l = d x  

u t and u ~ are also square-integrable. And therefore elements of  L~I,q)(R) 
are isometrically isomorphic to Hc. Note that 

( 1 ~  '/2 
Uq(p) = \-2-s I exp(qpx) u(x) dx 

= exp(qpx) u~ dx+ exp(qpx) ul(x) dxql 
o o  - o 0  

and so by using tr as described in Section 3, 

~q(p) = ( t r - iu~  + (o'-iul)(p)ql 
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Then, as {p: ~q(p) ~ O} is bounded,  so {p: (o'-iu~ # O} and {p: (cr-iu 1) • 
(p)  ~ 0} are bounded. So u ~ and u ~ are elements of the domain of  On/Ox" 
for n = 1, 2 , . . . ,  and therefore u is also. QED 

Lemma 2. Take v ~ Hc and consider the state Pv of  the CQM. Let 
h~(Pv) = Y~i aiP,,, where ui ~ /4o  for all i. Then E = {p: ~(p) ~ 0} is bounded 
implies that for any unit pure imaginary quaternion q, {p: ffiq(P)# 0} is 
bounded. 

Proof Take v ~ H c  such that E = { p :  ~ ( p ) r  is bounded. Then 

1 = Tr(PvPpc(E)) 

= Tr(hs(P~)PpQ(E)) 

= ~  a, Tr(P.,PpQ(E)) 
i 

Therefore, as ~i ai = 1 and all the ai are positive, 

Tr(P,,PpQ(E)) = 1 for all i (5.1) 

As Po = J' O/Ox with J '  not necessarily equal to a fixed quaternion unit, 
(5.1) does not restrict u~ in a simple fashion. However, we may use (5.1) 
to restrict q O/Ox. Note that for any self-adjoint operator A in either H o or 
Hc the relationship between the spectral measure of  A and that of  A 2 is 
PA~(B) = PA(B U - B )  for any Borel subset of  R, B. So for all i, 

1 >- Tr(P,,Pp~,(E)) = Tr(P, PpQ(E u - E ) )  >- Tr(P, Peo(E) ) = 1 

Therefore 

Tr(P, f p ~ ( E ) )  = 1 for all i 

Now P~  = -O2/Ox 2 = (q O/Ox) z for any unit pure imaginary quaternion q. 
Therefore for all i 

Tr( P.,Pq o/o~( E u;=dF, ) ) = Tr( P. Pp~ ( E ) ) = 1 

Therefore for all r {p: U i q ( p ) # O } E u - E ,  is bounded because E is 
bounded. QED 

Lemma 3. If  for v ~ H~, v(x)  is real for all x, {p: ~(p) ~ 0} is bounded 
and {x: v (x )=  0} is discrete, then for the state P~ in the He, h~(Po)--Po 
in /4o. 

Proof Let v satisfy the conditions of  the 1emma and let h~ (P~) = Yq ct~P,,. 
Then for any Borel subset of  R, E, 

Tr(PvPoc (E))  = Tr E a~P,~PQo(E)) (5.2) 
i 

Therefore ]v(x)]2=Z, a, lu,(x)l 2 for all x. 
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Therefore,  for all x, v(x) = 0 implies that ui(x) = 0 for all i. This means 
that for all i, u~(x) may be written as f(x)v(x) for some function f f rom 
R to Q. Therefore, for all x 

1 = Z aif*(x)f(x) (5.3) 
i 

where * represents quaternion as well as complex conjugation. 
Differentiating (5.3) for future use, we have 

O=~a,(-~x(f*(x))f(x)+f*(x,-~x(f(x)) ) (5.4, 

From Lemma 1, v ~ Dom(O"/Ox") in Hc for n = 1, 2 , . . . ,  and from Lemmas 
1 and 2m u~ ~ Dom(O"/Ox") in H a for n = 1, 2, . . . ,  and all i. So the expecta- 
tion values of  P~  and P ~  for the states Pv and Y.~ alP,,,, respectively, may 
be written as (v, P2cv) and Y.~ a~(ui, p2u~). Therefore from (5.2) 

and therefore 

0 o_0 o ) ( ; u  ,,,, o 
Ox ' Ox ~ i ~ 

Writing derivatives as pr imer  and inner products as integrals, we have f rom 
(5.5), that 

f~oo (v'(x))*v'(x) dx=~ a, f~_~ (f,(x)v(x)+f(x)v'(x))* 

x(f',(X)V(X) + f(x)v'(x)) dx 
As v(x) is real for all x, we then have that 

?o (v'(x))2 dx 

= f ~  ~i aif[*(x)f~(x)v(x)2 dx 

+ aif[*(X)f(X) +f*(x)fI(x))v'(x)v(x) dx 

+ f_~ ~ otif*(x)f(x)(v'(x))2 dx (5.6) 

Therefore f rom (5.6) 

o= f_~ E a,f;*(x)f~(x)v(x)Z ax 
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Therefore, as o~i is positive for all i, f~(x) = 0 for all i and all x for which 
v(x) # O. 

If  f (x) is not constant, then, as {x: v(x) = 0} is discrete, it must be that 
f ( x )  is discontinuous. This would imply that u; is discontinuous because 
v is C a, but  u~ is also C a, so for all i, f ( x )  is a constant, say f .  So 
ui(x) = v(x) f  for all x. Therefore, 

hs( Pv) = • aiP~y, = Z oziPv = P~ 
i 

asZ ai=l. QED 

Lemma 4. The set of real vectors v ~ Hc such that hs( Pv) = Pv contains 
a complete orthonormal set in Hc and so spans Hc. 

Proof Consider the set 

B= v~ Hc: v(x)= a I/Zsin(ax) or v ( x ) =  1 - c o s ( a x )  
\ ~ /  ax ax 

where a is any positive rational real[  
J 

If  

v(x) = ( a )  ~/2 sin( ax)ax 

then ~(p) = (2a) -~/2 for - a  < p  < a, and ~(p) = 0 otherwise. 
If  

v(x) = ( a )  1/2 1-cos(aX)ax 

then t ~ ( p ) = - i ( 2 a )  -~/2 for - a  < p  < 0  and ~ ( p ) =  i(2a) -~/2 for - a  < p  <0 ,  
and ~(p) = 0 otherwise. 

Now B is a linearly independent  set of  functions in Hc each of  which 
satisfies the conditions of  Lemma 3, that is, they are real, {p: ~(p) ~ 0} is 
bounded, and {x: v(x) = 0} is discrete. B spans Hc as the Fourier transforms 
span the set of  all step functions. 

From B we may produce a complete orthonormal set O via the Gram- 
Schmidt process. At each stage of  this process use is made only of  finite 
sums and scalar multiplication by inner products of the elements of  B. 
These inner products are always real because all the elements of B are real. 
So each o ~ O satisfies the conditions of  Lemma 3 and therefore h~(Po) = Po 
for all o~  O. QED 

Lemma 5. For any state P, of  CQM, if hs(Pv) = P~, for some v' ~ HQ, 
then for the corresponding proposition Pv of  CQM hp(P~) = P~,. 



974 Nash and Joshi 

Proof  Take P~ a state of  CQM such that h,(Po) = P~,. Suppose hp sends 
the proposi t ion Pv to the proposi t ion of QQM PM for M a closed subspace 
of  H o. Now 

1 = Tr(PvPo) = Tr(hs(Pv)hp(Po))  = Tr(P~,PM) = (v',  PMV') 

Therefore v'  ~ M. We can always find an or thonormal  basis of  M containing 
v'; let {v', ml ,  mz , . . . }  be such a basis. Let O be the complete or thonormal  
basis of  H c  produced in Lemma 4. Note that O may also be considered 
as a complete or thonormal  basis of  H o because it contains only real vectors 
which may be considered as elements of  both spaces. Because h~(Po,) = Po, 
for every oi e O we have fo ra l l  i that 

I(oi, 0)12 = Tr( Po, Po) = Tr( hs( Po,) hp( P~) ) = Tr( Po,P~) 

-- (o,, PMo,) = I(o,, v ' )12+E I(o,, mj)l = (5.7) 
J 

For the case that v = v'  we immediately have that ( o ,  mj) = 0 for all i and 
j. This implies that M = (v), i.e., that hp(P~) = P~, because 0 spans H o. 

For the case that v ~ v'  we note that the p roof  so far demonstrates that 
hp(Po,) = Po, for all i because h~(Po,) = Po,. Therefore for all i 

I(v, o,)12 : Tr( P~Po,) = Tr(  h~( P~)hp( Po,) ) 

= Tr(P~,Po,) = I(v', oi)l 2 

Then f rom (5.7), (oi, m j ) = 0  for all i a n d j  and s o r e  = ( v ' )  and 

hp(P~) = P~, QED 

L e m m a  6. For v~  H c  if v (x )  is real for all x, then hs(P~) = Po. 

Proof  Take v a real function in Hc .  From Lemma 4 we have a real 
or thonormal  basis O of  H c  that can be equally considered as one of  H o. 
For which o~ ~ O implies that h~(Po,)= Po,. We therefore can write v as 

n 
Y~ o~a~ with a~ real for all i. Now the finite sums vn =Y~=l o~a~ satisfy the 
conditions of  Lemma 3. So hs(Po.) = Po.. Then from Lemma 5, hp (Po.) = Iv. .  
Suppose that h~( P~) = Y~i aiP,,; then 

I(v, v~)l 2 = Tr(P~Po.) = Tr(h~(P~)hp(Poo)) 

= E ct, Tr(Pu,e~.)= ~. a,l(u,, Vn)l z 
J J 

As n goes  to  infinity, vn goes  to v and I(v, Vn)l 2 goes  to 1. and  so I(u,, v.) l  2 
goes  to 1 for  all i b e c a u s e  all the a,  are pos i t ive  and E, a,  = 1. Therefore ,  
J(u, v ) l  2 = 1 for all i. Therefore ,  for all i there exists s o m e  s, ~ Q such  that 
ui -= osi. Therefore 

h~(Pv)=~ ,a ,P~=Pv  QED 
i 
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Lemma Z For  any  v ~ Hc,  i f  v can be wri t ten as Vo+ ivl with Vo and 
v~ i n d e p e n d e n t  but  not  necessar i ly  normal ized  real e lements  o f  Hc,  then  
there  is some  unit  qua te rn ion  s and  some  pure  imaginary  uni t  qua te rn ion  
q for  which  

hs(P~) = Ps(~o+~lq) 

Proof. Take  12, vo, v~ ~ Hc as above  and  suppose  tha t  hs( P~) = Y~i aiP.~. 
First, we will show tha t  for  all i, u~ is an e lement  o f  the space  s p a n n e d  by  
vl and  Vo in H o ,  ({Vo, vl})~.  ={voa+v~b: a, b e  Q}. To  do this, take any  w 
a real e l ement  o f  H c  for  which  (v, w ) =  0; then  using L e m m a  6, we have  

0 = I(v, w)l 2 = Tr(PoPw) = Tr(hs(P~)hp(Pw)) 

= ~] Tr(P. ,ew) = Y, o~il(uiw)[ 2 
i i 

Because ~i is posi t ive for  all r (u~, w) = 0 for  all i. There fore  (v, w) = 0 if 
and  only if  0 = (Vo, w) = (vl,  w). Then  as the real e lements  o f  Hc and  H o 
are in one- to -one  co r r e spondence  via the obvious  identif ication,  we have  
for  all i tha t  0 = (ui, w) for  all real w an e lement  o f  H o for  which (Vo, w) = 
(v l ,  w) = 0. Call  this set o f  w's  the set W _  H o. N o w  W contains  a comple te  
o r t hono rma l  set spann ing  (Vo, Vl)~Q because  for  an e lement  o f  H o to be  
pe rpend icu l a r  to bo th  Vo and va, so must  its real componen t s .  These  real 
c o m p o n e n t s  are therefore  e lements  of  W. Therefore ,  WJ-=({Vo, v l } ) ~  = 
({Vo, V~})HQ and we also know that  all u~ e W~ 

Second,  we show that  there is some u an e lement  o f  ({Vo, Vl})H o such 
tha t  for  all i, P,, = P, .  To  do this, cons ider  P~ as a p ropos i t ion  of  C Q M  
and  suppose  hp(P~) = P~ for  M a subspace  o f  H o. So 

1 = Tr(PoPo) = Tr(h~(P~)hp(Po) = Z a, Tr(P. ,PM) 
i 

Therefore ,  as all the cti are posi t ive and  ~i a~ = l ,  ui ~ M for  all L 
Now,  

[(Vo, v)[ 2 = Tr(P~oPo) = Tr(h~(Poo)hp(Po)) 

= Tr(evoeM) = I(Vo, P~vo)[ 2 

and  similar ly I(v~, v)] 2 = ](v~, P~v~)] 2. As I(Vo, v)l 2 and  I(v~, v)l 2 are nei ther  
bo th  one nor  bo th  zero,  M({vov~})Ho must  be  one-d imens iona l .  Call  it 
({u})nQ, say. Then  because  ui must  be an e lement  of  M({vovl}) ,o = (u)nQ, 
then  P.~ = P ,  for  all i. 

So h,(Po)= P, and,  f rom L e m m a  5, hp(P~)= P,. 
We take  u to be  normal ized  and  write u = voa + v~b for  some a, b e Q. 

N o w  by cons ider ing  ](Vo, u)] 2 and  I(va, u)l 2, we have  

I ol =+  I(vo, = I( o,  )12 = I( o, u)l = 

= I ol=lal = + I(vo, v,)l=lbl = 
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Iv,12§ I(~o, ~1)1 == I(v,, v)l 2= I(~,  u)l ~ 

= Iv, l=lbl 2§ v,)12Jal ~ 

from which one can deduce with some manipulation that 1= lal ~= IbJ =. 
Taking 1 = (u, u ) =  (v, v), we find from an alternative expansion of 

](Vo, u)[ 2 that 0 = 2 Re(i)(vo, v~) = 2 Re(a*b)(vo, v~). Therefore, a*b = q for 
some unit pure imaginary quaternion q and so 

U=Voa+v lb=a(vo+v lq )  QED 

Lemma 8. There exists a fixed unit quaternion s and a fixed unit pure 
imaginary quaternion q such that for all  v that can be written as Vo+ v~i, 
as in Lemma 7, hs(P~) = Ps(~o+v,q)- 

Proof Take v, w ~ Hc with v = Vo + vl i and w = Wo + wl i both satisfying 
the conditions of Lemma 7. Using Lemma 7, there exist unit quaternions s 
and t and unit pure imaginary quaternions q and p such that 

hs(P~) = Ps~vo+~,q) and hs(Pw) = P,~wo+w,p) 

Now 

and 

](v, w)l 2 :  ](Vo, Wo)+(v~, Wl)+(Vo, w l ) i -  i(vl ,  Wo)[ 2 

--I(vo, ~o)12+ I(v,, Wl)l 2+ I(~o, w,)l~+ I(~,, wo)l 2 
+2[(Vo, Wo)(V,, Wl)- (Vo, w,)(v, ,  Wo)] 

I(v, w)[ 2 = Tr(PvPw) = Tr(h,(Pv)hp(Pw)) 

= IS(Vo+ vlq), t(w2+ w,p)l 
By a long expansion we find that this is equal to 

(V0, W0)2"~- (D1, Wl)2-~-(~)0, W1)2"4-(Vl, W0) 2 

+2[(/)0, W0)(Vl, Wl)--(I)0, Wl)-- (/')0, WI)(Vl, W0)] Re(q~p) 

where ql = t*sqs*t. 
Combining the two expressions for [(v, w)l = above, we can deduce that 

either ql =P or 

D(v, w)= (Vo, Wo)(V,, Wl)- (Vo, wi)(v, ,  Wo)= 0 

In the case that D(v, w ) #  0 and therefore q~ = p  we have that 

t(Wo+ w~p) = Wot + wltt*sqs*t = S(Wo+ wlq)s*t 
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and so hs(Pw) = Ps(wo+w~q). In the case that D(v, w) = 0 and ({v0, vl})ue is 
perpendicular to ({Wo, Wl})HQ we will show that a w'e Hc may be found 
satisfying the conditions of Lemma 7 such that D(v, w') ~ 0 and D(w', w) 
0. In this case hs(Pw,)=P~(w~+~q), which then implies that h~(P~,)= 
P~<~o+wlq)- To show this, take w~ and w~ both to be linear combinations of 
Vo, vl, Wo, and Wl such that neither of w~ and w~ is perpendicular to any 
of Vo, v~, Wo, and w~. 

Choose w~ and w~ such that (w~, Vo), (w~, Vl), and (w~, vl) are fixed; 
then, because Vo is not parallel to Vl, we can choose (w~, Vo) so that 
D(v, w') ~ O. Because ({Vo, DI})HQ is perpendicular to ({Wo, wl})Ho, we can 
independently and similarly ensure that D(w', w) ~s 0 while keeping Wo and 
wl nonparallel. 

Now for any w and v we can find a w " s H c  such ({w", wl})nQ is 
perpendicular to both ({Vo, v~})uQ and ({Wo, Wl})HQ. SO, using the above 
argument twice, we have that hs(Pw) = Ps(~o+~,q~. QED 

Vectors which do not satisfy the conditions of Lemma 7 may always 
be written as the product of a real vector and a complex number, uc = 
U(Co+iCO. Now h~(P,c)= hs(P , )=  P, = P~,~(o, where tr is an isomorphism 
between C and ({1, q})o for any unit pure imaginary quaternion q and any 
unit quaternion s. Then, using Lemma 8, there exist some q and some s 
such that for all v ~ Hc, h~(P~)= P,(o), where ~b is the tr linear isometry 
mapping n c  into HQ with (~b(v))(x)= scr(v(x)). 

For mixed states D of CQM, with a decomposition into pure states of 
~,i ctih~P~,, h~(D) must equal Y.i a~h~(p~,) = ~.i a~P4,(~,) or else be in contradic- 
tion with equation (2.2). So ~b has been shown to generate h~ entirely. The 
following lemma shows that ~b also generates hp entirely. 

Lemma 9. For all propositions of CQM PM~, Mc a subspace of Hc, 
and all propositions of QQM PMQ, MQ a subspace of Ho, if for all pure 
states of CQM D, 

Tr(DPMc ) = Tr(h~(D)P~ o) (5.8) 

then MQ =(~b(Mc))M o and as a direct consequence 

Proof. Take PM~ and PMQ propositions of CQM and QQM, respec- 
tively, satisfying (5.8). 

Now for all v ~ Hc, 

(v, PM~V) = Tr( P~PM~ ) = Tr( hs( P~)PM e) = Tr(P6(~)P~o) 

= (6(v), P~oC~(v)) 

If  A ~ Mc, then (v, P ~ v )  = Ilull = = (~(v),  P or(v)). As 6 is an isometry, 
q~(v) ~ M O. Therefore, as MQ is closed, (dp(Mc)),oc_ M O. 
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Let ~0 be a nonzero element of  M o such that �9 e (qb(Mc))~o; then, as 
(4~(Mc))H~ Mo, ~'=~--P~*(Mc)>H ~ is an element of  M o such that it is 

~ ~ "  Q . 

perpendicular to (q~(Mc))Ho. We know r spans Ho, so there exists 
a o e Hc  such that (q~(v), ~ ' )  ~ 0. Then v' = v - PMcv is an element of  Hc 
perpendicular to Mc such that (~b(v'), (~ ' )  ~ 0. Therefore, (v', P~c, v') = 0 
and (~b(v'), PMo, 4 , (v ' ) )~0 .  This is a contradiction, so it must be that 
Mo=(~b(Mc))n  o. QED 

For Ac and A o Hermitian operators of  Hc and Ho, respectively, to 
represent the same physical observable in CQM and QQM, respectively, it 
must be that their spectral measures PA~(" ) and PAo(" ) satisfy 

Tr(DPAc(E)) = Tr(hs(O)Pao(E)) (5.9) 

for all states of  CQM D and all Borel subsets of  R. Therefore from Lemma 
9 if PAc(E) = P~c for some subspace Mc of  Hc, then PAo(E) = P<4,(~c)>,, �9 
Then from the uniqueness of  the spectral resolution of A o it can be showQn 
that Aock(v) = qb(Acv) for all vc  Hc in the domain of  Ac. 

This implies that the momentum is Po=s~(i)s-~O/aa and that 
J = s6r( i )s  -1. 

Finkelstein et al. (1959) established that the propositions of QQM that 
commute with a fixed anti-Hermitian unitary operator  are isomorphic with 
the proposition of CQM. We have essentially shown the reverse: that the 
set of  propositions of  QQM which have the same physical content as the 
set of  propositions of  CQM must all commute with a fixed anti-Hermitian 
unitary operator J and that J is as  above. 

The following lemma extends this type of  situation to unitary operators 
of Hc and H o. 

Lemma I0. Lemma 9 showed that in a particular case the operators 
of  QQM are closely related to the operators of  CQM. In the present lemma 
we expand this to include unitary operators U o of  QQM and Uc of CQM 
which satisfy 

1(Uogg(v), ~b(u))] = l( Ucv, u)] for all v, u ~ Hc (5.10) 

If  one intends to represent a symmetry of the world by UQ in QQM and 
by Uc in CQM, then one can expect that the transformation probabilities 
associated with the symmetry in QQM are equal to the corresponding 
probabilities in CQM, which is what (5.10) asserts. The statement of Lemma 
10 is: 

If  Uc is a unitary operator  in the Hc and UQ is a unitary operator in 
Ho, and Uc together with UQ satisfy (5.10), then there is some k e  C such 
that Uoq~(v) = ~b(kUcv) for all v ~ Hc. 
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Proof. Take v ~ Hc and let u = Ucv; then from (5.10) 

I(uQ~(v),  ~(U~v))l  = l(Ucv, u~v) l  = I(v, v ) l -  II ~ II = 

$o Uod(v)=ck(Ucv)q~ for some unit quaternion q~. Now take nonzero 
v~, v2~ Hc such that (v~, v2)= O; then 

uoq~( v~ + v~) = 4~uc( o~ + v~)qo~ +o~ = 4,( u~vl)qv,  +o~ + 6 (  U~v~)qo, +o~ 

and 

Uo~b( vl + vz) = UOdp( vl) + Uork( vz) = ~b( Ucv,)qvl + fb( Ucvz)q,~ 

As (vl,  vz)=0,  we have that (rb(Uc, vl), fb(Uc, vz)) =0.  So, from above, 

qv, +vz = qv, = q~ . 
Now take nonzero v ~ Hc and nonzero a ~ C, then 

6(  Ucv)o'( a)q~a = 6(  Ucva)q~o = UQr( va) = Uor(  v)tr( a) 

= 6(Ucv)q~o'(a) 

So q~ = tr(a)-lq~o'(a). 
Now take nonzero Vl, v2 ~ Hc with (Vl, v2) = 0 and nonzero b s C; then 

by the above, q~=q~ as (Vl,V2)=0 and q~,=q~b as (v l , vzb)=O and 
qo~b = cr-l(b)q~20"(b). Therefore, q~ = tr(b)-lqvo'(b). So [qol, cr(b)] = 0 for 
all nonzero vl e Hc and nonzero b ~ C. As tr is an isomorphism from C 
onto some subalgebra of  Q, q~, ~ o ' (C)  for all vl ~ Hc. This then means that 
qo~ = q~ for all nonzero v ~ Hc and nonzero a ~ C. 

As Hc has a complete or thonormal  basis, then as every element of  the 
basis is perpendicular  to every other, their q's are all the same. Therefore, 
for every nonzero Vx, v2~ Hc, q~l = q~= = q ~ tr(C). We may set q0 = q and 
so, writing q = o'(k) for some k c  C, 

Uo( 6v)  = 6(  Ucv)o'( k) = 6((  Ucv)k) = c~( kUcv) QED 

This lemma is particularly helpful when investigating the relationship 
between the time translation operators of  QQM and CQM, U, e and U,c, 
respectively. The condition (5.10) can then be read as: the probabil i ty that 
a proposi t ion P~ of  CQM is found to be true when the system has evolved 
a time t f rom when it was in the state P~ is equal to the probabili ty that 
the proposit ion hp(Pu) in QQM is found to be true when the system has 
evolved for a t ime t f rom when it was in the state hs(Pu). This is precisely 
how we require the QQM description to relate to the CQM description. 
Lemma 10 then implies that for all t there exists a k, ~ C such that for 
all v c Hc 

Uodp( v) = q~( ktUtcv) (5.11) 
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As we said in Section 3, Finkelstein et al. and Truini have shown that Ut e 
may be written as exp(JHot) with J a unitary skew-Hermitian operator and 
H o a positive Hermitian operator both uniquely determined from U,Q by 
the requirement that H o be positive. 

We have from the corollary to Lemma 9 that for all v s Hc in the 
domain of Hc 

Hoq~v = qb ncv  (5.12) 

Then the uniqueness of J and H o described above together with equations 
(5.11) and (5.12) is sufficient to ensure that k t = l  for all t and that 
J = scr(i)s -~. 

6. CONCLUSION 

The requirement that one-dimensional wave QQM give results con- 
sistent with one-dimensional wave CQM in the region that CQM describes 
is sufficient to ensure, using only measurable quantities, the existence of a 
o'-linear isometry ~b from Hc into HQ which recreates the entire structure 
of CQM within QQM. We can more clearly characterize the complexity of 
an operator if we first unitarily transform QQM so that s = 1. Then ~b 
identifies Hc with 2 L<{l,~v~)t>(g~). So, as the quaternionic linearity of an 
operator implies its "complex" linearity on r and because 4~(Hc) 
spans HQ, an operator of QQM corresponds to an operator of CQM if and 
only if it leaves qb(Hc) invariant. This allows us to talk of complex states 
and propositions of QQM. 

In Lemmas 5-9 the N-linear isometry th ig shown to generate hs and 
hp as a consequence of two assumptions only: 

1. That Tr(DPM)=Tr(hs(D)hp(PM)). 
2. That there exists a real basis of ~ such that hs(Pv)= P~ for all v 

in the basis. 

Standard functional analysis theorems imbedding one Hilbert space into 
another were not directly applicable to this problem, as the first assumption 
above does not immediately translate into preservation of the inner product. 

Lemmas 1-4 show the existence of such a basis. This is achieved by 
first finding a particular set of states of CQM (call this S) for which the 
position probability density function (PPDF) and the expectation value of 
the momentum squared (EVM2) for each state in S are sufficient to deter- 
mine them uniquely. The requirement that QQM agree with CQM as 
described in Section 2 means that hs must map these states to states of 
QQM that have the same PPDF and EVM2. The form of the position and 
momentum operators of QQM as determined in Section 3 is sufficiently 
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close to their form in CQM and the PPDFs and EVM2s of the states of S 
are sufficiently peculiar that when the PPDFs and EVM2s are considered 
in QQM they uniquely determine states which are identical to those states 
they determined in CQM, i.e., for Pv in $, h s (P v )=  Pv. It is then shown 
that S contains a basis of Hc and therefore of H o. 

The unique relationship between position and momentum, which is a 
direct result of relating the generator of space translations to momentum, 
is the peculiar premise (in terms of standard functional analysis) which 
ensures the existence of the basis. However, because of this grounding of 
our results in translation invariance we do not foresee any difficulty in 
extending our results to three dimensions, where this relationship remains 
between the fundamental observables positions and momentum. On the 
other hand, we do anticipate problems with extending our results to include 
internal symmetries and the like, where there is no such relationship between 
the observables nor is there the same sense of their fundamental nature. 

We have not yet shown that QQM does not contradict CQM in any 
way (Truini et al., 1981), but we have specified the structure of QQM for 
there to be a possibility of it being consistent with CQM (which is the world 
around us). 
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